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ABSTRACT
Breadth-First Search (BFS) is a common building block for several
graph processing algorithms today. In this work, we highlight that
a large fraction of vertex visits across the network in distributed
BFS results in wasteful work. We investigate methods to identify
and filter such wasteful cross-network vertex visits to save network
bandwidth for energy and performance improvements. We analyze
the metadata requirements to perform such filtering in modern hier-
archical distributed architectures and identify the tradeoffs between
storage and filtering rate. We perform our experiments using the
graph500 benchmark and provide a model to scale results to larger
graphs. Finally, we propose heuristics to reduce the storage for a
BFS message filter and explore the design space for implementing
such filtering logic in software, hardware, or a combination.

ACM Reference Format:
Prachatos Mitra and Alexandros Daglis. 2023. Filtering Wasteful Vertex
Visits in Breadth-First Search. In Workshops of The International Conference
on High Performance Computing, Network, Storage, and Analysis (SC-W 2023),
November 12–17, 2023, Denver, CO, USA. ACM, New York, NY, USA, 4 pages.
https://doi.org/10.1145/3624062.3625133

1 INTRODUCTION
Graph processing algorithms are fundamental in several areas of
computing, such as data mining, AI and social networks. Key com-
putational kernels such as Breadth-First Search (BFS) form an im-
portant building block for graph processing algorithms and are
included in several benchmark suites [5]. Implementing an effi-
cient BFS algorithm for distributed highly parallel execution is
challenging due to the nature of graph datasets. First, a large num-
ber of real-life graphs exhibit power law connectivity, resulting
in irregular access patterns with low data reuse. More fundamen-
tally, however, BFS algorithms tend to be dominated by data access
over computation in the distributed setting. This leads to commu-
nication (i.e., data movement over the network) being the primary
performance determinant [4].

Prior works optimize BFS by improving locality through tech-
niques such as 2D decomposition [4, 6] or algorithm modifications
to reduce computations [3]. However, all these approaches still
result in more computation and communication than necessary,
incurring redundant edge traversals that result in repeated visits
to the same vertices, compared to an optimal approach that would
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only traverse an edge if the destination vertex has not yet been
visited. Redundant vertex visits entail excess work that consumes
additional compute cycles and—in the case of distributed settings—
precious network bandwidth, which is often the main performance
bottleneck. Importantly, the larger the graph, the higher the fraction
of wasteful vertex visits. Therefore, early detection and trimming
of such wasteful edge traversals can reduce overall compute and
network bandwidth utilization for performance and energy gains.

We focus on methods to identify and filter unnecessary vertex
visits to reduce the communication volume in BFS, investigating
the challenges and opportunities arising from the hierarchical na-
ture of many modern architectures. We highlight how hierarchical
architectures can be leveraged to cull excess communications by
aggregating information at intermediate levels and using it as an
early filter that eliminates wasteful vertex visits by the source of
the visit’s initiation. We make the following contributions:
• We introduce a method of filtering wasteful vertex visits for BFS
in hierarchical architectures and analyze the relation of required
storage overheads versus achieved filtering rates.

• We propose a method of extrapolating results for filtering perfor-
mance and storage overheads to massive graphs of sizes that are
intractable for most current systems.

• We investigate a number of alternative software and hardware de-
signs to identify practical filtering implementations that balance
storage requirements versus achieved filtering rates.

Scope and limitations:While filtering can be applied to several
graph algorithms, our analysis focuses on BFS. This short paper
does not delve into specific hardware designs for filtering, but lays
the groundwork to determine the relation between hardware re-
quirements and filtering efficiency. The results of the study can
help hardware designers determine the type of hardware and re-
source provisioning required as a function of the desired filtering
effectiveness, and gauge the attainable energy/performance gains.

2 FILTERING OPPORTUNITY IN BFS
2.1 Hierarchical architectures
We focus on the execution of BFS on large distributed systems with
a hierarchical structure consisting of thousands of interconnected
hardware coherent islands, as shown in Fig. 1. We use the term
group for a collection of processing elements (PEs) that define a
shared memory domain and have direct access to a shared slice of
memory. A “compute node” may comprise several groups sharing
an endpoint that enables access to the distributed system’s network
(i.e., a NIC). Fig. 1 shows a compute node with two groups and two
PEs per group. The groups are connected over a Network on Chip
(NoC) to the system-level network through an aggregation point
termed group connector (GC). Such an aggregation point features
a network interface (NIC), which may feature compute capabilities.

https://doi.org/10.1145/3624062.3625133
https://doi.org/10.1145/3624062.3625133


SC-W 2023, November 12–17, 2023, Denver, CO, USA Prachatos Mitra and Alexandros Daglis

Inter-group interconnect

TOR Switch
HW filtering

...

TOR Switch
HW filtering

TOR Switch
HW filtering

TOR Switch
HW filtering...

Spine Switch
Hardware filtering

Spine Switch
Hardware filtering

Group connector
HW filtering

NIC

Node

Interconnect + interfaces
HW filtering

Group 1 Group 2

PE
SW filtering

PE
SW filtering

Interconnect + interfaces
HW filtering

PE
SW filtering

PE
SW filtering

 Network

Figure 1: High-level hierarchical architecture design with
candidate locations for deployment of filtering mechanisms.

Fig. 1 also marks candidate locations where filtering mechanisms
can be deployed across the hierarchical architecture’s multiple tiers.
We can perform software filtering at each individual PE, or estab-
lish hardware filtering units at each group interface and GC. These
hypothetical hardware filtering structures may be implemented in
a network processor, leveraging their “gateway” position which
naturally grants visibility of all messages entering and exiting a
group, or a set of groups, depending on the tier. For simplicity, we
focus on filtering opportunities at the different levels of a single
compute node (groups and GCs), but all analyses can be extrap-
olated to the higher resource grouping levels introduced by the
network’s switches, as marked in Fig. 1.

We refer to a collection of compute resources at various levels
as a logical partition (LP). For instance, a group defines an LP
that encapsulates a number of PEs in the same shared memory
domain, a GC defines an LP that encapsulates all PEs in the groups
connecting to that GC, etc. The filtering rate achievable and the
associated storage required is a function of the graph slice size
contained within an LP. In a hierarchical system, the level where a
filtering approach is applied defines the number of LPs the system
is divided into. In Fig. 1’s example, filtering at the lowest level of
the hierarchy (i.e., individual PEs) results in the highest number of
LPs (# nodes × 4). A filtering mechanism applied at the group level
reduces the number of LPs by 2×, while doing so at the GC level
reduces LPs by an additional 2×.

2.2 Vertex Visit Filtering in BFS
2.2.1 Overview. BFS is a building block for several graph algo-
rithms. We consider a graph 𝐺 = (𝑉 , 𝐸) where 𝑉 is the set of
vertices and 𝐸 is the set of bi-directional edges, and use the top-
down BFS algorithm, where we start with a root vertex 𝑣 ∈ 𝑉 , and
expand the frontier by adding each vertex 𝑣𝑖 that is connected to
𝑣 . This is repeated in each step, with the frontier only comprising
vertices not visited in a prior step. Parallel implementations of BFS
are typically level-synchronous: each frontier may be processed in
parallel in a superstep with a barrier between two frontiers. In the
worst case, we perform checks on |𝐸 | vertices, while the optimal
number is |𝑉 | since each vertex needs to be visited only once. This
difference can significantly impact performance when |𝐸 | >> |𝑉 |.

We consider Kronecker-generated synthetic graphs from
Graph500 [5] (of 224 vertices and edge factor of 16, unless other-
wise specified), with vertices distributed across the system’s mem-
ory partitions uniformly at random. These graphs have a power
law characteristic for their vertex degree and exhibit small-world
and scale-free properties—similar to real-life graphs such as social

networks—resulting in two effects. First, the frontier size grows
rapidly, and is a significant fraction of the graph within a few su-
persteps. Second, the power law nature of the in-degrees leads to
some vertices having a disproportionately high number of checks
performed on them due to being connected to a large number of
vertices. Therefore, in conventional top-down BFS on such graphs,
a few such vertices cause a large number of wasteful checks.

A

E

D

C

B

F

Supersteps:    0 1 2 3

Figure 2: Example of wasteful
vertex visits in BFS.

2.2.2 Filtering in BFS. Fig. 2
illustrates the occurrence of
wasteful vertex visits in BFS.
Starting from vertex A, super-
step 1 visits vertices B and C. Su-
perstep 2 visits new vertices D
and E, but D is visited twice, and
vertex A is visited again. BFS
concludes in superstep 3 with
two visits to vertices A and F, of
which the visit to A is wasteful. Ultimately, instead of the ideal
number of 6 vertex visits required to complete BFS, 10 checks are
performed when no form of filtering is present. A vertex visit in a
single-node system incurs compute and memory access overheads,
while in a distributed setting it may also incur data movement
on the bandwidth-constrained network. Hence, filtering wasteful
vertex visits can reduce computations and memory/network traffic.

Graph scale
(Edge factor: 16)

Filtered vertex
visits (%)

20 97.1
22 97.5
24 98.2
26 98.8

Table 1: Filtering rate vs. graph size.

Table 1 shows the
achievable filtering degree
assuming an ideal mech-
anism that tracks all prior
vertex visits globally: for
a Kronecker graph with
226 vertices and edge factor 16, almost 99% of vertex visits can
be filtered. However, to reduce network traffic in a distributed
processing setting, filtering must be done at the source of the
vertex visit’s initiation, which means each LP can only use locally
available information, which is necessarily a small subset of the
global graph information. As Fig. 3 shows, the maximum possible
visits that can be filtered drops to 85% with 32 LPs for a graph with
224 vertices. The amount of achieved filtering decreases almost
linearly with the number of LPs—e.g., the opportunity of 85%
filtering in a 32-LP system drops to a mere 13% on a 16K-LP system.

While the filtering opportunity drops with system size, it in-
creases with graph size, as the power law nature of graph connec-
tivity results in few highly connected vertices and many isolated
vertices. Scaling the trend observed in Fig. 3 for graphs of size
220 − 227 linearly, we estimate ∼ 60% filtering for a 242 graph on a
16K-LP system, and 90% on a 2K-LP system. However, achieving
such filtering rates assumes that we store information at each LP
about all vertices of the graph that have been visited so far, which
would introduce a storage requirement of 100s of GBs for a graph of
that size, replicated at each LP. Thus, we study the limits of filtering
possible as a function of storage requirements.

2.3 Filtering in hierarchical architecture
2.3.1 Software filtering. Filtering can be performed in software at
each group or each PE by maintaining a list of all vertices that any
message from the group or PE has visited in the past. As mentioned
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Figure 3: Filtering efficiency as a function of logical partition
count, for three different graph sizes.

earlier, this can filter 60% of the total traffic on a system comprising
16K groups and operating on a graph with 242 vertices.

2.3.2 Hardware filtering. Aggregating visited information across
multiple groups and using it to perform filtering at a higher-level
LP can increase the filtering rate. For example, the GC is a good
candidate for performing filtering using aggregated information
from all the groups located beneath it, thus forming a larger LP.
Consider a system that applies filtering at the level of a GC that
connects 8 groups together. Fig. 3 shows that, for a graph with
220 vertices, reducing LPs by 8×, from 2048 to 256, via filtering
information aggregation improves filtering rate by 30.5%.

3 STORAGE & FILTERING RATE TRADEOFFS
The primary design tradeoff for a BFS filtering logic is between
the memory required to track previously visited vertices and the
achievable filtering rate. A secondary aspect for hierarchical sys-
tems is the level in the hierarchy to apply filtering logic, which
defines the resulting number of LPs. Finally, we need a method to
scale analytical results that are obtained from smaller graph sizes
to the largest graphs that may run on such systems.

3.1 Scaling filtering behavior to huge graphs
We construct scaling models to extrapolate results from small
graphs we can run in our setup (227) to the largest size defined
by graph500 (242).

3.1.1 Storage scaling. A straightforward approach to perform fil-
tering is by maintaining a bit-vector for vertices previously visited
at each LP [1]. Storage requirements (1 bit per vertex) scale lin-
early with the size of the graph as well as the number of LPs. For
instance, a 2𝑀 graph with N LPs needs a bit-vector with 2𝑀 bits
for each of the N LPs. Alternative approaches require the same
percentage of the graph to be stored to achieve filtering across
different graph sizes. For instance, selectively storing filtering infor-
mation for vertices above a certain percentile category (e.g., based
on vertex degree) will require storing a similar fraction of the graph
regardless of the graph’s size. Moreover, the fraction of vertices
in each frontier of BFS does not significantly change with larger
graph sizes [3]. Hence, the maximum frontier size as a fraction of
the graph stays the same if we do not change the number of LPs
while doubling the graph size. Therefore, we use a linear projection
for filtering storage requirements with graph size as follows:

Storage(𝑑𝑒𝑔𝑟𝑒𝑒𝑖+1) = Storage(𝑑𝑒𝑔𝑟𝑒𝑒𝑖 ) × 2(𝑑𝑒𝑔𝑟𝑒𝑒𝑖+1−𝑑𝑒𝑔𝑟𝑒𝑒𝑖 ) (1)

3.1.2 Filtering ratio (FR) scaling. The achievable FR increases with
graph size: due to the graph’s extreme power law, the number of

isolated vertices goes up and few vertices with very high in-degree
can get filtered (in-degree −1) times [2]. Fig. 3 shows slow linear
scaling with an increase in graph size. For example, with 256 LPs, a
227 graph has 65% filtering rate, while a 224 graph has 60%, an 8%
relative increase as the graph size grows by 8×. We consider this
FR increase ratio to extrapolate the achieved FR to larger graphs
(8% improvement with each increase in graph scale by 3) and define
the scale factor 𝑆 (𝑆 = 8

3%), leading to the equation:

FR(𝑑𝑒𝑔𝑟𝑒𝑒𝑖+1) = FR(𝑑𝑒𝑔𝑟𝑒𝑒𝑖 ) × (1 + (𝑑𝑒𝑔𝑟𝑒𝑒𝑖+1 − 𝑑𝑒𝑔𝑟𝑒𝑒𝑖 ) × 𝑆)
(2)

Therefore, scaling from 227 to 242 increases the FR by 40% of the
value at 227, namely from 65% to an expected 91%.

3.2 Baseline storage requirements
The simplest method of storing information about past visits is
by using a bit-vector, thus requiring 512GB for a 242 graph, which
would be infeasible to store per LP, whether the LP is a PE or
even a group. Our goal is to reduce the number of vertices we
track visited information for, while minimally reducing the filtering
rate. However, doing so implies a need also to store vertex IDs or
log(#vertices) bits per entry (∼6 bytes for a 242 graph).

The orange line in Fig. 4a shows the total graph’s % of vertices
that must be retained in each LP if we retained information for all
vertices that are visited from that LP. With 32 LPs, retaining all
vertices visited from an LP using vertex ID would require storing
15% of the graph’s total vertices or 242 × 0.15 × 6 bytes = 659GB
per LP, exceeding the storage required for a bit-vector. If, instead,
we assume an oracle that only stores the IDs of vertices accessed
again in the future (blue line in Fig. 4a), storage can be reduced
by 10×. We discuss two practical (i.e., non-oracular) approaches
to reducing storage requirements for filtering purposes: (i) only
retaining vertices within an individual superstep instead of through-
out the entire execution, and (ii) selective storage by identifying
“important” vertices (using in-degree as a heuristic).

3.3 Filtering within individual supersteps
In BFS, a frontier is created in each iteration, and messages are sent
at once to all vertices in the frontier at the end of a superstep. In
small-world scale-free graphs such as Kronecker-generated graphs,
few supersteps end up having frontiers of the size of 30-40% of the
graph, while the other supersteps are relatively small. Therefore,
it is reasonable to expect that we have enough information locally
within an individual superstep without retaining information about
visits in previous supersteps. The orange line in Fig. 4b shows the
filtering effectiveness if only the information from the current su-
perstep was used. Due to the size of the supersteps, we see a minor
drop in filtering effectiveness but up to a 3× reduction in storage
requirements, getting much closer to the oracle filter (Fig. 4a). How-
ever, retaining all vertices even just within a single superstep still
leads to several hundreds of GBs of storage required per LP (e.g.,
∼ 150 GB for a 242 vertex graph with 32 LPs). While a simple opti-
mization of removing the vertices with an in-degree of one reduces
storage requirements by ∼ 30%, we need additional heuristics to re-
duce storage requirements while retaining the vertices more likely
to contribute to filtering.
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Figure 4: Storage requirements for filtering.

3.4 Filtering using in-degree threshold
Due to the power law nature of the graph, some vertices participate
in more messages than others, based on their degree. We find that
80% of filtering actions are from 20% of vertices, which typically
correspond to ones with high in-degree. Therefore, we consider
using in-degree as a threshold to limit the size of the filter structures
while maintaining high filtering effectiveness.

Fig. 4c shows a case of a 227 graph on a system of 32 LPs, and a
variable in-degree threshold on the x axis. The graph shows the ratio
of the maximum storage and effective filtering rate to the maximum
possible values. The maximum filtering rate is ∼ 84% with the same
storage requirement as keeping all vertices of the graph (∼600GB).
Due to the power law nature of the graph, the entries required
(orange line) drop off exponentially compared to the filtering ratio.
For example, 35% of max filtering is achieved with only ∼0.6% of the
maximum storage or ∼ 4GB per LP. However, fixing a specific in-
degree value threshold does not scale to larger graphs; instead, we
can use vertex in-degree percentile as a harness to control the filter
size and filtering rate for graphs of larger size. For 227 vertices, the
99.9th percentile in-degree threshold corresponds to 16k entries that
achieve 16.8% filtering. The required filter size increases linearly
from 220 to 227, and the filtering rate increases by around 0.5% every
time the graph’s size doubles. With these, we project around 1GB
storage required for ∼23.5% filtering rate for a 242 graph.

Although much smaller than the 100s of GBs required by naive
filtering approaches, depending on the storage type and filter place-
ment, these sizes still limit the types of practical hardware filtering
units. For instance, GBs of storage will not fit in a typical switch’s
SRAM structures, but using an HBM to store the filtering informa-
tion makes a few GBs viable.

4 IMPLEMENTATION CONSIDERATIONS
In hierarchical architectures, filtering can be performed at different
levels. We investigate three cases.

Software-only filtering in each group. This approach significantly
reduces the overall filtering effectiveness compared to what would
be attainable if filtering information was aggregated across groups.
As earlier indicated in Fig. 3, aggregating information across 8
groups can improve the filtering rate by 30%.

Hardware-only filtering at the GC. Filtering at the GC has the benefit
of aggregation and reduced storage. The GC’s filter would be larger,
however, as it would need to retain vertices that have been visited
from all of the GC’s groups. For a 242 graph, scaling linearly from
results of a 227 graph, we project 24% filtering rate with 1GB storage.

Hierarchical filtering: software-only filtering in each group and
hardware filtering at the GC. A hierarchical filter would perform
the same as hardware-only filtering at the GC, because every filter
at a group contains a strict subset of vertices maintained at the
GC. However, it will reduce traffic on the interconnect between
the groups and the GC. Applying different thresholds for the fil-
ter at the group and GC levels would allow amortizing storage
requirements across the two types of filters without affecting the
filtering rate. Using the scaling methodology in Section 3.1, for an
in-degree threshold of 99.5% percentile at the GC, we project that
42.5% filtering is attainable with (i) 10 GB at the group and 2.5 GB
at the GC, (ii) 11.5 GB at the group and 1.5 GB at the GC, or (iii)
12.5 GB at the group and 250 MB at the GC.

5 CONCLUSION
Up to 99% of vertex visits in distributed BFS can be filtered with
an oracle filter, and ∼ 85% with a filter at the visit’s source using
node-local information. While filtering can be done in hardware
or software, filtering at a higher level of a hierarchical architecture
can aggregate information to achieve a higher filtering degree. We
investigated several approaches to reduce the considerable stor-
age requirements required for such filtering. Using in-degree as a
criterion reduces the filtering rate but also reduces storage over-
heads significantly. Further reductions in storage requirements are
possible through hierarchical filtering (first in software, then in
hardware). Such a hybrid method is a promising approach to reduce
communication overheads of BFS in hierarchical systems. A similar
filtering approach can be extended to other key graph kernels be-
yond BFS, like triangle counting, but at a significantly higher cost
in terms of storage and computational requirements.
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