
Dead Page and Dead Block Predictors:
Cleaning TLBs and Caches Together

Chandrashis Mazumdar∗ Prachatos Mitra∗ Arkaprava Basu
Department of Computer Science and Automation

Indian Institute of Science
{chandrashism, prachatosm, arkapravab}@iisc.ac.in

Abstract—The last level TLB (LLT) and the last level cache
(LLC) play a critical role in the overall performance of memory-
intensive applications. While management of LLC content has
received significant attention, the same may not be true for LLT.

In this work, we first explore the well-known concept of
dead blocks in caches for TLBs. We find that dead pages are
fairly common in the LLT. Different from dead blocks in LLCs,
dead pages in LLTs are most often dead-on-arrival, i.e., they
produce zero hits in the TLB. We design a storage-efficient dead
page predictor that works with a fraction of storage compared
to typical dead block predictors. This is important since an
LLT itself requires only a few KBs of storage compared to
MBs in LLC. We then leverage the dead page information to
guide a simple dead block predictor in LLC. This is driven by
the observation that dead blocks are often concentrated within
dead pages. In effect, we designed a dead page predictor and a
correlating dead block predictor with a total storage overhead
of only 11KB to bypass predicted dead pages and dead blocks
in LLTs and LLCs, respectively. Together, these predictors help
improve the IPC of a set of 14 memory-intensive workloads by
8.3%, on average.

Index Terms—TLB; virtual memory; last-level cache; replace-
ment algorithm

I. INTRODUCTION

A miss in the last level TLB (LLT) and/or in the last

level cache (LLC) is slow. A miss in the last level TLB

can require up to four memory accesses to walk the page

table to find the missing address translation. A miss in LLC

requires an off-chip memory access. Since misses in LLT and

in LLC are expensive and cannot be hidden through memory-

level parallelism of even large out-of-order cores, often, the

performance of memory-intensive applications depends upon

the frequency of LLT and/or LLC misses.

While the management and replacement strategies of LLC

have received significant attention over the decades [1]–[6],

the same cannot be said about the replacement strategies in

LLT. The work on reducing misses in LLT has been primarily

focused on using large pages that allow a single entry in LLT

to map a larger contiguous amount of memory. However, large

pages are not a panacea for reducing LLT misses. Operating

systems and/or application modifications are necessary for

deploying large pages. If the physical memory is fragmented,

it may not be possible to use large pages. Since the availability

of large pages is not guaranteed, the use of large pages can

lead to significant run-to-run variations. The requirement of

*Authors contributed equally.

contiguous virtual address allocation and alignment to a large

page boundary means that not all addresses can be mapped

using large pages. Consequently, many commercially popular

applications advise against the use of large pages [7]–[9].

We, thus, explore a complementary approach in this work to

improve the management of LLT contents to improve its value

to application performance.

In this context, we turn our attention to the well-explored

concept of dead blocks in LLC. A dead block is an entry in a

cache that will not experience further hits until its eviction. The

entry is dead because it serves no purpose while occupying

space in the cache. There has been a large body of work on

predicting dead blocks in caches [1], [2], [10]–[17]. A dead

block can be prioritized for replacement [1], [2], [10], [12]–

[14] or bypassed [11], [15], [16]. This improves utilization of

the cache capacity and reduces the miss rate.

An unexplored question is whether LLT can also harbor

many dead entries? Our first contribution in this work is

to characterize dead entries in the LLT empirically. We call

a dead entry in TLB a dead page. We find that for many

applications, 82% of LLT entries can be dead at any given

point in time. We find that a large fraction of these dead

pages – about 86% of them, on average, are dead on arrival
or DOA pages. A DOA page experiences no further hit during

its stay in the LLT after it is used for the demand request that

brought it. Therefore, LLT misses would not increase if a DOA
page was not allocated (i.e., bypassed). Bypassing a true DOA
page can, however, avoid replacing an otherwise useful entry

from LLT. This helps in reducing misses and in increasing the

effectiveness of LLT.

Given the prevalence of DOA pages in LLT, we design a

DOA page predictor for LLT. A predictor for LLT is more

sensitive to additional storage than a predictor for LLC. The

storage of a typical 1024-entry L2 TLB (LLT) would be ∼
11.75KB. Compare this with multi-MB LLCs. Consequently,

a practical predictor design for LLT can afford at most 1-2KB

of storage. Thus, a key challenge is how to design an accurate

and yet low-overhead DOA predictor for LLT.

Our DOA (dead) page predictor, called dpPred, uses a novel

two-dimensional history table for better storage-efficiency. The

table is indexed with a hash of the program counter (PC)

in one of the dimensions while a hash of the virtual page

number (VPN) is used for the other dimension. The PC of the

instruction that brought an entry in the LLT is not immediately

507

2021 IEEE International Symposium on High-Performance Computer Architecture (HPCA)

2378-203X/21/$31.00 ©2021 IEEE
DOI 10.1109/HPCA51647.2021.00050

available during the entry’s eviction. Thus, the hash of that

PC needs to be stored in each LLT entry for updating the

predictor’s history table on eviction from LLT. On the other

hand, a TLB entry already contains VPN; no additional storage

is required. For example, in our default design, the predictor

keeps a small 6-bit hash of PC of the instruction that brought

an entry to the LLT. The 1024-entry history table is then

indexed using the hash of PC and a 4-bit hash of the VPN. We

empirically found that while PC is important for the predictor’s

accuracy, a DOA page predictor using a combination of PC and

VPN achieves an accuracy similar to one using only PC, but

with less storage.

The history table entries contain 3-bit saturating counters

that act as confidence predictors. A counter is incremented on

detecting a true DOA page. At the time of an LLT fill (i.e.,

on completion of a page walk), a DOA page is predicted if

the counter value in the history table is above a threshold. A

predicted DOA page is not placed in the LLT (bypassed).

We keep a small (e.g., two entries) shadow table that keeps

recently bypassed entries and also acts as a victim buffer.

A hit in the shadow table indicates misprediction. We use

this as negative feedback and reset the predictor’s entries

corresponding to the given VPN. This helps in maintaining

higher accuracy (on average, accuracy is 83.6%).

We then observe that LLT and LLC accesses are not entirely

independent [18]. In hindsight, it is natural since address

translation precedes data access. We empirically found that

LLCs often contain more than 50% DOA blocks. While this is

lower than that in LLT, it is still significant. Importantly, we

found that DOA blocks are much more likely to be a part of a

DOA page than a non-DOA page. Specifically, more than 70%

of the DOA blocks are concentrated only on DOA pages.

We design a low-overhead DOA block predictor for LLC that

leverages DOA page information. We name it the correlating

dead block predictor (cbPred). The key idea is to use DOA
page information as a filter for DOA block prediction. It

enables two advantages. 1© It helps cbPred achieve high

accuracy (often ≥ 99%) as it attempts to predict DOA only for

blocks that map onto DOA pages. We empirically found that

a block belonging to a DOA page is more likely to be a DOA
block than a block from a non-DOA page. 2© Since we update

the predictor for only a subset of blocks, even a relatively small

history table ensures limited aliasing. Further, since cbPred
uses output from a PC-directed dpPred for filtering, there is

no need to use PC in cbPred itself. Therefore, LLC entries do

not store (hash of) PC. Consequently, cbPred uses 6×-11×
less storage compared to previous dead-block predictors. Like

in LLT, on a predicted DOA block, we do not allocate it in the

LLC (bypass).

dpPred and cbPred, working in tandem, improves IPC

of 14 memory-intensive applications by 8.3%, on average

(geometric mean). The LLT and LLC MPKI reduce by 9.65%

and 4.24%, on average. Importantly, the cumulative state

overhead of both the predictors is just around 11KB. Compare

this to typical LLC dead block predictors that incur state

overhead of 60-120 KB just for the LLC [2], [10].

In summary, we make the following contributions.

• We quantify and characterize the presence of dead entries

(a.k.a. dead pages) in LLT.

• We design a storage-efficient dead page predictor for the

LLT that uses novel concepts like mixed indexing using

PC and address to keep storage overhead low.

• We then leverage dead page information of LLT to design

a correlating dead block predictor in LLC.

II. BACKGROUND ON DEAD BLOCK PREDICTORS

Here, we discuss previous works on dead block predictors

(DBPs) for caches. Since dead blocks, by definition, cannot

produce hits in the cache, DBPs attempt to identify such blocks

to bypass them (e.g., [11], [15], [16]) or prioritize them for

victimization (e.g., [2], [10], [12]–[14]) or prefetch more

useful blocks into the identified entries (e.g., [1]). This way,

DBPs can help improve the usefulness of a cache.

DBPs differ based on different metrics and/or signatures

used to identify dead blocks. For example, Lai et al. proposed

to use a trace of instructions accessing a block to predict

when a block becomes dead [1]. Alternatively, researchers

have proposed using the number of cycles or the number of

references for which a block is typically alive in a cache for

predicting dead entries [19], [20]. Kharbutli et al. proposed a

counter-based predictor that uses the number of accesses to a

block or the number of accesses to a set between two accesses

to a block (i.e., access interval) as the trigger for declaring

when a block becomes dead [13].

Liu et al. proposed using cache bursts, i.e., a contiguous

stream of accesses to a given block, for predicting dead

blocks [17]. SHiP is a signature-based dead-block predictor

that uses hit counts whereby LLC blocks are predicted to have

either a distant or an intermediate re-reference interval [2].

More recently, Faldu et al. proposed to use live distance, i.e.,

stack distance between allocation and eviction of a block, to

help predict dead entries [14].

Since the storage requirement of a DBP is an important

design consideration, Khan et al. proposed to track on a few

sets of the cache and use a shadow tag structure for training

the predictor [11]. Further, software support for profiling or

compiler annotation to help predict dead blocks has also been

explored in the past [21], [22].

While many researchers have explored dead block predic-

tors for both L1 caches and LLC, there has been little work

on dead pages. This work aims to fill that gap. In the process,

we find that the nature of dead entries in LLT and LLC

are different (detailed in Section IV-C), and thus, dead block

predictors for caches are not immediately applicable to TLBs.

III. EXPERIMENTAL METHODOLOGY

Before discussing the analysis of dead pages and blocks,

it is imperative to detail our experimental methodology. We

performed experiments using the Sniper simulator. Sniper is a

Pin-based x86 simulator in the Graphite framework [23]. We

enhanced the simulator to emulate a realistic page table walk.

Specifically, we allocate a four-level radix tree data structure

508

TABLE I: Parameters for experiments

CPU 2.66 GHz, OoO core
L1 D-TLB 64 entries, 4-way, 1 cycle.
L1 I-TLB 128 entries, 4-way, 1 cycle.
L2 TLB 1024 entries, 8-way, 8 cycles.
Page Walk Cache 3 levels, fully associative, Entries: 4 (L1), 8 (L2), 16

(L3), Lat. (cycles): 1 (L1), 1 (L2), 2 (L3)
L1 D-Cache 32KB, 8-way, 5 cycles.
L2 Cache 256KB, 8-way, 11 cycles.
L3 Cache 2MB per core, 16-way, 40 cycles, inclusive.
Main Memory 191 cycles.

TABLE II: Workloads

Workload Description Mem. footprint
cactusADM Benchmark from SPEC 2006 780 MB
cc Connected Components

benchmark from GAPBS
680 MB

cg.B Conjugate Gradient algorithm from
NAS Parallel Benchmarks

300 MB

sssp Single-Source Shortest Path bench-
mark from GAPBS

900 MB

lbm Benchmark from SPEC 2017 450 MB
Triangle Triangle counting from Ligra

benchmark suite
450 MB

KCore K-core decomposition from Ligra
benchmark suite

450 MB

canneal Routing cost optimization in chip
design from PARSEC

350 MB

pr PageRank from GAPBS 680 MB
graph500 Breadth-first-search and single-

source-shortest path over
undirected graphs

400 MB

bfs Breadth-First Search from Ligra
benchmark suite

450 MB

bc Betweenness Centrality benchmark
from GAPBS

680 MB

mis Maximal Independent Set bench-
mark from Ligra benchmark suite

450 MB

mcf Minimum cost Network Flow
benchmark from SPEC 2006

450 MB

as the page table. The page table contents are cached on the

processor caches as in the real hardware. A walk triggered by

an LLT miss may need up to four memory accesses. Like real

hardware, we use page walk caches (PWCs) to cache partial

translations to reduce the number of accesses on a page walk

to 1 to 3 memory accesses (on a hit to PWC). Therefore, the

page walk latency is variable – it depends upon hits/misses

to PWCs and whether the page table accesses hit in the data

caches. When a page walk completes, it places the translation

in both L1 and L2 TLB (LLT) in our design. Alternatively,

it is possible to place the translation into L1 TLB only. An

entry can then be placed in the LLT on its eviction from the

L1. However, we did not find any significant performance

difference between these two alternative designs.

Table I details the configuration of the simulated baseline

processor. Table II lists the applications used in the evaluation.

We chose these applications from various benchmark suites

such as SPEC CPU 2006 [24], SPEC 2017 [25], Parsec [26],

Ligra [26] and GAP benchmark suite [27]. We chose appli-

cations with relatively large memory footprint (listed in the

table) and simulated entire applications.

TABLE III: Percentage of LLC DOA blocks that map on to a

DOA page in LLT

Workload LLC blocks (%) Workload LLC blocks (%)
cactusADM 72.22 canneal 64.15
cc 67.76 pr 33.33
cg.B 92.14 graph500 81.40
sssp 93.25 bfs 81.00
lbm 99.98 bc 62.38
Triangle 73.33 mis 62.23
KCore 68.18 mcf 66.18

IV. QUANTIFYING DEAD PAGES IN LLT AND ITS RELATION

WITH DEAD BLOCKS IN LLC

We first quantify dead pages in the TLB. We then explore

the correlation between dead pages and dead blocks in LLC.

A. Dead pages in TLB

We focus on the LLT (here, L2 TLB) since an LLT miss

triggers a slow page table walk that could affect performance

of applications. In contrast, the latency of an L1 TLB miss that

hits in the L2 TLB is often hidden by out-of-order cores. The

total heights of stacked-bars in Figure 1 show the estimated

fraction of dead LLT entries at a given time, on average. We

estimate the fraction by sampling entries over time. Across all

workloads, on average, 81.66% of LLT entries are dead at any

given time. Let’s momentarily ignore stacks in the bars.

To better characterize dead pages, we classify LLT entries

into 1© dead-on-arrival (DOA), 2© mostly dead (dead time

> live time) but experienced at least one TLB hit, and 3©
active/mostly live (dead time < live time). We classify entries

at the time of their eviction from LLT, unlike the sampling of

entries in Figure 1. DOA entries produce zero hits during their

stay in LLT after servicing the demand request. The mostly

dead entries spend the majority of their time in TLB as a

dead entry. Only the last category of entries is truly valuable

to retain in LLT.

Figure 2 quantifies and categorizes dead pages at the time

of eviction. The total height of each stacked bar represents

the percentage of all entries that had more dead time than live

time at the time of their eviction from LLT. Each bar is then

divided into DOA entries and mostly-dead entries. The lower

stack represents DOA entries. First, as expected, a majority of

the entries at the time of their eviction spent more time as a

dead entry in the LLT. Further, on average, more than 85%

of these entries are DOA. Figure 1 shows a similar breakdown

of the DOA pages among the dead entries, but as a sampled

view of LLT contents averaged across many snapshots. This

measurement also shows the prevalence of DOAs. This leads

to two key observations that guide the rest of the work. 1©
There are many dead entries in the LLT that can be leveraged

to improve TLB performance. 2© DOAs dominates among the

dead entries, and thus, any technique to leverage dead pages

in LLT should focus on DOA pages.

B. Correlation between dead pages and dead blocks

TLB and cache accesses are not entirely independent [18]. A

TLB lookup precedes a cache lookup. Therefore, an interesting

509

0%

20%

40%

60%

80%

100%
LL

T
ev

ic
tio

ns
Dead entry DOA entry

Fig. 1: Fraction of LLT entries dead or DOA at any time

0%

20%

40%

60%

80%

100%

LL
T

ev
ic

tio
ns

Mostly dead DOA

Fig. 2: Classification of dead pages in LLT

0%

20%

40%

60%

80%

100%

LL
T

ev
ic

tio
ns

Dead entry DOA entry

Fig. 3: Fraction of LLC entries dead or DOA at any time

0%

20%

40%

60%

80%

100%

LL
C

ev
ic

tio
ns

Mostly dead DOA

Fig. 4: Classification of dead blocks in LLC

question is whether there exists any correlation between the

dead pages and the dead blocks in LLC. If yes, one could

leverage the dead page information to identify dead blocks in

the cache accurately. We focus on the correlation between the

LLC and the LLT since LLC misses are costly.

Before we analyze the correlation between dead pages and

blocks, we quantify the existence of dead blocks in the LLC.

Figure 3 reports the fraction of entries (sampled) in the LLC

that are typically dead and the DOA fraction at any given time.

We observe that, on average, 83% blocks in the LLC can

be dead at any point in time. This is in line with previous

studies [11].

Figure 4 shows what fraction of blocks are DOA and

what fraction are mostly-dead at the time of eviction. We

additionally note that a significant fraction of dead entries is

DOA, similar to a previous study [28].

The analysis in the previous subsection demonstrated that

dead entries in LLT are predominantly DOA while here we find

that LLC also contains a significant fraction of DOA blocks.

Thus, an obvious question is if DOA blocks in LLC relate

to DOA pages in LLT. If so, then the detection of a DOA in

one structure can help predict DOA in the other structure. To

quantify the opportunity for such an optimization, we measure

the likelihood of a DOA block in LLC being part of a DOA
page in the LLT.

Table III shows the fraction of all DOA cache blocks that

map on to a DOA page in the LLT. On average, we find that

72.7% of all DOA cache blocks fall on a DOA page, while only

27.3% of the DOA blocks fall on a non-DOA page. Therefore,

a DOA block is more likely to be part of a DOA page. We

will later show how we leverage this propensity for building

a low-overhead but accurate (> 98% accuracy) DOA block

predictor for LLC with the aid of a DOA page predictor.

C. Discussion

To appreciate the intuition behind the prevalence of DOAs,

we must note that the LLTs/LLCs observe the access streams

filtered by the upper levels (closer to the core) of TLBs/caches.

Therefore, an LLT or an LLC entry does not witness immediate
reuse after the entry/data is brought on demand. If the reuse

distance of an entry, after its immediate reuse, is large enough,

then LLTs/LLCs will fail to register any hit, resulting in a

DOA. We found that 50.4% of all LLC blocks are DOA, on

average. This is similar to numbers reported by others [28].

However, LLTs have a larger fraction of DOA entries than

LLC (78.9% of LLT entries are DOA). This is primarily be-

cause an LLC hosts orders of magnitude more entries (blocks)

compared to the number of entries in an LLT. Consequently,

the length of the average stay of an entry in LLT is 4×-5×
shorter than an LLC entry. This increases the likelihood of

DOA entries in LLT since the reuse distance needs to be shorter

to produce a hit in LLT.

A curious reader could ask if the dead block predictors

designed for LLC could work well for LLT too? While in

Section VI-A we quantitatively show how LLC dead block

predictors can be ineffective for LLT, here we present a

high-level intuition on why so. The dead block predictors

have primarily focused on non-DOA entries, which are more

common in LLC [1], [13]. However, LLTs have much more

DOAs. Thus, those predictors do not work well for LLT.

Secondly, compared to a cache block entry, a TLB entry size

is much smaller. For example, a typical cache block size,

including tag and data, would be around 70 bytes, while a TLB

entry is around 12 bytes. Therefore, the amount of metadata

that can be reasonably added to TLB entries for prediction is

far limited compared to a cache block.

One can also ask whether dead pages can be predicted using

dead block information. This is hard for two reasons. First,

since many cache blocks (e.g., 64) map onto a single page,

an entry in TLB is likely to be dead only if a substantial

percentage of cache blocks belonging to the page is dead

(often >70%). This would necessitate tracking all predicted

dead blocks that map onto a given page to help predict a dead

page. Second, as mentioned earlier, an entry typically stays

much longer in LLC than an entry in LLT. It is not uncommon

510

ADefault LLT entry

LLT
Bypass?

h(PC)

Shadow Table

F
L
U
S
H

pHIST

h(PC)

h(VPN)

3 bit counter

Fig. 5: Design of LLT’s dead page predictor (dpPred)

that an LLC block may not be dead, but the page that it maps

is dead in the TLB. Therefore, one would often fail to detect

a dead page if guided only by dead blocks.

V. DESIGN AND IMPLEMENTATION OF PREDICTORS

We describe the dead page predictor for LLT and then the

LLC dead block predictor that leverages the knowledge of

dead pages.

A. Dead page predictor

We focus on building a storage-efficient DOA predictor

for LLT since the analysis in Section IV demonstrated that

majority of dead pages are DOA. We call this the dpPred or

Dead-Page Predictor. When dpPred predicts a DOA, we do

not allocate the corresponding entry in the LLT (i.e., bypass)

to avoid replacing useful entries.

Figure 5 depicts a high-level diagram of the proposed

design. To help identify a true DOA page, we first add a single

bit (Accessed) to each entry. This bit is unset by default and is

set only on a TLB hit to that entry. A DOA page is identified

if the Accessed bit is unset upon the eviction of an entry. This

information is then used to update the predictor’s history table

(described shortly) accordingly.

Each TLB entry also stores a hash of the program counter

(6 bits long by default) of the memory instruction that brought

the entry in the TLB. The hash is computed by dividing the

PC into subblocks and XOR-ing them.

Next, we keep a simple two-dimensional direct-mapped

table of 3-bit saturating counters as the history table (default,

1024 entries), as shown in Figure 5. We call this table the

page history table or pHIST. This history table is indexed by

the hash of PC in one dimension and the hash of VPN (here, 4
bits) for the other dimension (Figure 5). We use VPN alongside

PC, to avoid storing many bits in each TLB entry. Since VPN
is naturally available during evictions and lookups, no extra

storage overhead is required. We empirically found that the

performance achieved using a mix of PC and VPN is similar to

solely using PC (Section VI). However, the former (proposed

design) reduces storage overheads on the TLB.

The pHIST is looked up during the eviction of a TLB entry

to increment the corresponding saturating counter based on

whether an entry is a DOA, and during TLB fill to predict if

the incoming translation is a DOA.

Finally, we introduced a small shadow table to correct

mispredictions and also work as a victim buffer. The shadow

table stores the VPN of recently predicted DOAs, along with

the corresponding translation (2 entries by default). A match

in the shadow table on a TLB miss signifies a mispredicted

DOA. The column of entries corresponding to the (hash of)

given VPN is flushed from the pHIST on such incidents to

forget the mispredicted DOA (right upper side of Figure 5).

In short, the shadow table provides negative feedback to the

predictor on mispredictions to help improve accuracy.

Operation: Now that we have described the key components

of the predictor and its design philosophy, we summarize steps

taken by the predictor on LLT lookups, during LLT fill, and

during the eviction of an entry from the LLT.

Figure 6a shows the flowchart of operation on an LLT

lookup. On a hit to an LLT entry, the Accessed bit is set. On

a miss, however, the shadow table is looked up to ascertain

previous mispredictions. On a match in the shadow table, the

translation is returned from the shadow table’s victim entry.

The translation is also placed in the LLT, and the shadow table

entry itself is removed. Finally, to provide negative feedback

to the predictor, entries (column) corresponding to the hash of

the VPN are cleared from the pHIST table.

On an LLT miss, before sending the request downstream,

the hash of the PC that triggered the miss is stored in the

LLT’s MSHR. This avoids the need to attach the PC to the

page walk request. When the walk finishes (i.e., during the

LLT fill), the hash of the PC will be needed for prediction.

Figure 6b shows the operation on an LLT fill, i.e., when a

page walk request completes for an earlier LLT miss. On an

LLT fill, the pHIST table is looked up using the combination of

the hash of the PC (from the MSHR) and the hash of the VPN.

If the counter value in the history table entry is more than a

threshold value (here, 6 by default), the VPN is predicted to

be a DOA. Consequently, the translation is not placed in the

LLT and instead placed in the shadow table’s victim entry.

Otherwise, the usual allocation in LLT follows.

Figure 6c shows the process of updating the predictor’s

history table on eviction of an LLT entry. We compute the

hash of the VPN and couple it with the hash of the PC stored

in the LLT entry to look up the two-dimensional pHIST table.

If the Accessed bit in the LLT entry is set, then it was not a

DOA, and thus the counter in the pHIST table entry is cleared.

Otherwise, the counter is incremented by one.

B. Correlating dead block predictor

The analysis in Section IV demonstrated that 1© typically

there are significant number of DOA blocks in the LLC, and
2© most of these DOA blocks fall on the DOA pages of the

LLT (e.g., on average, 73% of the DOA blocks concentrated

on DOA pages). We thus set out to design a low-storage

correlating LLC DOA block predictor that utilizes information

about DOA pages. We name this predictor the correlating dead

block predictor or cbPred in short.

The key idea in cbPred is to update the DOA block

predictor and attempt to predict DOA in LLC only if the

block’s address falls on a DOA page. This has two important

benefits. First, it incurs very low storage overhead (∼10KB

511

Miss

1. Insert entry into LLT
2. Store h(PC) in the LLT entry

3. Unset Accessed bit
4.�Remove entry from

Shadow Table

Miss

Set Accessed bit for LLT
entry

Hit

Hit

1. Store h(PC) in LLT's MSHR
2. Initiate Page Walk

1. Access column for h(VPN)
2. Flush all entries in column

�Shadow
Table lookup for

�VPN v

LLT
�lookup for VPN

v

(a) Predictor workflow on an LLT lookup

1. Retrieve hash_pc from
MSHR

2. Compute h(VPN)
3. Lookup pHIST

Counter beyond
threshold?

1. Bypass LLT entry for
VPN v

2. Insert VPN v
and�LLT�entry contents into

Shadow Table

Yes

No

LLT fill for VPN v

1. Insert entry for VPN v
into�LLT�

2. Store h(PC) in the LLT
entry

3. Unset Accessed bit

Send PFN to LLC controller
for PFQ insertion

(b) Predictor workflow on an LLT fill

LLT eviction for VPN v

Accessed bit set?

1. Compute h(VPN)
2. Retrieve h(PC)
3. Lookup pHIST

with�h(VPN) and�h(PC)

NoIncrement counter in
pHIST

Yes

Predict as not DOA and clear
counter in pHIST

(c) Predictor workflow on an LLT eviction

Fig. 6: Operation of the LLT’s dead page predictor (dpPred)

���
����

��	 ���

��
��
�������

����

��
������������� � !��� "�#������������� $"�

Fig. 7: Design of correlating dead block predictor (cbPred)

compared to 50-100s KBs for typical dead block predictors).

Since the predictor is updated only by a limited subset of all

cache block addresses, a relatively small number of entries

in the history table can keep the number of collisions in the

predictor’s history table low. Further, unlike many dead block

predictors (e.g., SHiP-PC) that store PC along with each cache

block, there is no such requirement here. The PC is indirectly

used to filter out the candidates for DOA block since the

dpPred that guides cbPred, uses (hash of) PC. Second, the

predictor becomes highly accurate, with prediction accuracy

over 99% in almost all cases (Section VI). The screening of

candidates using DOA pages ensures that the predictor attempts

to predict only for blocks that are likely to be a DOA.

Figure 7 depicts the high-level components of cbPred.

To realize the above idea, we propose to introduce a small

structure to keep physical page numbers of recently predicted

DOA pages at the LLC (at every slice in a banked LLC

configuration). We call this structure the PFN filter queue or

PFQ. We found that an 8-entry PFQ is sufficient since typical

cache block accesses fall in recently accessed pages. Entries

in PFQ are replaced in a simple FIFO order.

When the dpPred in the LLT predicts a DOA page, the

corresponding PFN is sent to all LLC slices. In the worst

case, such communication happens only as frequently as page

walks. Further, only a fraction of those walks (TLB fill) would

be predicted to be DOA. This communication is also off the

critical path of execution. On receiving PFN corresponding to

a DOA page, the LLC controller inserts the entry in the PFQ.

The update of LLC’s dead block predictor (cbPred) and

the prediction for a DOA block happens only if the block falls

on a DOA page, i.e., PFQ has a matching entry. This is key

to the predictor’s high accuracy at a low storage overhead.

As shown in Figure 7, we add two bits to each cache block

entry to identify blocks that belong to a predicted DOA page

and identify a true DOA block. A dead page bit (DP) is set for

cache blocks that map on to a predicted DOA page. The bit is

unset by default and is set when a cache block is allocated in

LLC whose PFN is in PFQ. Further, an Accessed bit captures

if a cache block has produced a hit during its stay in the

LLC. This bit helps identify true DOA blocks and is used for

updating the predictor’s history table.

As typical to most predictors, we introduce a direct-mapped

table with saturating counters, called the block history table

or bHIST. In the default configuration, there are 4096 entries

in the bHIST for a 2MB LLC. Counters in bHIST are updated

only if a cache block being evicted has its DP bit set (i.e., the

block maps onto a DOA page).

Operation: Now that we have described the basic philosophy

behind our proposed DOA cache block predictor and its key

hardware components, we detail important steps taken in the

event of a TLB fill, eviction of an entry from LLC, on a lookup

to LLC, and on an LLC fill.

On a TLB fill request, if the page is predicted DOA, the

corresponding PFN is sent to all LLC slices (in a banked LLC).

On receiving such a message, the LLC controller inserts the

PFN in the PFQ.

Figure 8a shows the flowchart of operations on an LLC

lookup. On an LLC hit, its DP bit is first checked. If the DP
bit is set, then the Accessed bit is also set. On a miss, a main

memory access is initiated as usual.

During an LLC fill (Figure 8b), the PFN of the incoming

cache block is matched against all the entries in PFQ in

parallel. No action is taken if there is no match. On a match,

the cache block address is folded and XOR-ed to create a

12 bit hash to lookup the bHIST table. If the counter value

in the corresponding entry in the bHIST table is more than a

threshold (here, 6), then the incoming block is not allocated in

the LLC (i.e., bypassed). If the counter value is below or equal

to the threshold, then it signifies that while the block falls on

a DOA page, the predictor is not yet confident to predict the

block is a DOA block. In this case, we allocate the incoming

block in the LLC, but we also set the DP bit.

512

Miss

Hit

Set Accessed bit�

Yes

LLC block
lookup

DP bit set?

Initiate Main Memory
access

No action, proceed
with hit

No

(a) Predictor workflow on an LLC lookup

LLC fill for block with
PFN p

1. Insert block into LLC
2. Unset Accessed bit

3. Set DP bit

1. Compute�h(block address)
2. Lookup bHIST with�
h(block address)

Counter value
beyond

threshold?

Bypass block from LLC

Yes
No

Match with
PFQ entries

Match

No Match

No action, proceed with
fill

(b) Predictor workflow on an LLC fill

LLC block eviction

Accessed bit
set?

1. Compute h(block address)
2. Lookup bHIST with�
h(block address)

No

Increment counter in
bHIST

Yes

Predict as not DOA and
clear counter in bHIST

DP bit set?

No action, proceed
with eviction

No

Yes

(c) Predictor workflow on an LLC eviction

Fig. 8: Operation of correlating dead block predictor in LLC (cbPred)

During eviction of an LLC block, the DP bit in the block

is checked (Figure 8c). No action is taken if DP is unset. If

the DP bit is set, but not the Accessed bit, then the block’s

address is hashed into bHIST table to increment the counter. If

both DP and Accessed bits are set, it indicates that the cache

block is not a DOA and the corresponding counter in bHIST
table is cleared.

C. Impact on hit and miss latency

LLT hit latency is not impacted by dpPred. On a hit, the

translation is returned to the L1 TLB before the Accessed bit

is set. On an LLT miss, only the 2-entry Shadow Table lookup

happens in the critical path before page walk starts, which has

a negligible impact on the miss latency. The Shadow Table

reduces the number of walks by working as a victim buffer.

The steps mentioned in Figure 6b during LLT fill are not in the

critical path either. They are performed after the translation is

returned to the L1 TLB.

LLC hit latency is not impacted by cbPred since the DP
and the Accessed bits may be examined after returning the

block to the higher-level cache. On an LLC miss, there is no

action taken. On an LLC fill, similar to LLT, the block is

returned to the L2 cache before the PFQ is looked up. Hence,

LLC miss latency is unaffected by cbPred.

D. Storage overhead analysis

The total storage overhead due to both predictors is below

11KB. A detailed breakdown of the overhead is as follows.

Dead page predictor: The dpPred’s storage overhead has

three components – additional storage added to the LLT, the

pHIST table and the shadow table. We added a total of 7 bits

of metadata (6 bits hash of the PC and Accessed bit) to each

TLB entry. For a 1024-entry TLB this adds 7Kbs or 896 bytes.

The pHIST table has 1024 entries, with each entry holding a

3-bit wide saturating counter. This adds another 3Kbs or 384
bytes of storage. Finally, the two-entry shadow table with each

entry around 13 bytes long adds a total of 26 bytes. In total,

the storage overhead is 1306 bytes.

This amounts to less than 11% storage overhead for a

1024-entry TLB. We assume the default TLB entry to be 94
bits long, and thus, the LLT would require about 11.75KB

storage in the baseline. A TLB entry contains 29 bits VPN

tag (assuming 48 bits virtual address), 39 bits PFN (assum-

ing 51 bits physical address), 12 bits ASID, 4 bits MPK

protection key [29], metadata bits including protection and

supervisor/user.

Correlating dead block predictor: The correlating dead

block predictor adds storage overhead due to metadata in the

LLC, bHIST table, and the PFQ. We add two bits for each

LLC entry. Considering a 2MB LLC, this adds to about 8KB

of storage. A 4096 entry bHIST with 3-bit long entries adds

1.5KB of storage. Finally, an 8 entry PFQ with each of its

entries holding 39 bits of PFN adds 39 bytes of storage.

Therefore, the total overhead of the dead block predictor is

around 9.54 KB or about 0.47% state overhead for a 2MB

LLC. If we put both the dead page and dead block predictors

together, then the total state overhead is around 10.81KB or

0.53% of the LLT and LLC storage budget.

VI. RESULTS

We evaluate to answer the following questions. 1© How

much improvement does the dead page predictor (dpPred)

provide? Could traditional dead block predictors applied to

LLT achieve similar performance? 2© How much further IPC

improvement is possible with the correlating dead block pre-

dictor (cbPred), and how does it compare against traditional

dead block predictors for LLC? 3© How does the storage

overhead of each compare? 4© How sensitive are the dead

page and correlating dead block predictors to various hardware

configurations?

A. Dead page predictor

Figure 9 shows the normalized IPC with our DOA dead page

predictor (dpPred). To demonstrate the need for dpPred we

also report the IPC if AIP, and SHiP are applied to the LLT

(denoted by AIP-TLB and SHiP-TLB, respectively). We use

PC as the signature for SHiP and configure SHiP–TLB to use

similar storage as dpPred, indexing with an 8-bit hash of the

PC. Since the baseline replacement policy is LRU, we adapt

SHiP to mark entries predicted to have distant re-reference as

LRU. For AIP, since it needs 21 bits with every TLB entry,

we use the default 256× 256 two-dimensional history table.

Finally, to demonstrate the value that dpPred brings, we

show the IPC if the L2 TLB was extended with slightly more

513

0.95

1.00

1.05

1.10

1.15

N
or

m
al

ize
d

IP
C

AIP-TLB SHiP-TLB dpPred Iso-storage TLB1.45

Fig. 9: Normalized IPC for TLB dead page predictors

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

No
rm

al
ize

d
IP

C

AIP-LLC SHiP-LLC AIP-TLB + LLC SHiP-TLB + LLC cbPred

Fig. 10: Normalized IPC for LLC dead block predictors or

LLC and TLB combined predictors

TABLE IV: LLT MPKI reductions by dead page predictors

Benchmark
AIP–
TLB
(%)

SHiP–
TLB
(%)

dpPred
(%)

Iso–
TLB
(%)

Oracle
(%)

cactusADM 0.6 7.3 37.8 2.8 55.2
cc 0.0 6.4 7.8 6.0 12.8
cg.B 0.0 8.0 16.0 0.0 18.3
sssp 0.0 6.8 9.4 6.0 32.1
lbm 1.0 0.0 30.2 0.0 46.5
Triangle 0.0 5.5 8.1 3.6 14.1
KCore 0.0 4.1 4.6 2.8 13.3
canneal 0.0 2.9 3.4 5.0 15.4
pr 0.0 4.3 4.4 0.0 15.2
graph500 0.2 1.3 3.8 3.5 18.5
bfs 0.0 0.0 0.0 0.0 10.0
bc 0.0 4.2 8.6 9.7 33.6
mis 0.0 0.0 0.0 0.0 16.7
mcf 0.0 0.0 1.0 0.0 9.0

amount of storage than dpPred’s storage overhead for iso-
storage comparison. Therefore, there are a total of four bars

in the cluster for each application.

First, we observe that in eleven out of fourteen applica-

tions, dpPred improves IPC. The application cactusADM’s

performance improves the most, by about 45%. The aver-

age IPC improvement across all applications is about 5.2%.

Dead block predictors like AIP, when applied to the LLT,

provide almost no performance improvement. While SHiP
does improve performance, the improvement is much smaller

compared to dpPred. The reason SHiP-TLB was able to

provide relatively better performance than AIP-TLB is that

SHiP primarily predicts DOA while AIP focuses on non-DOAs.

In Section IV we found that LLT’s dead entries are dominated

by DOAs.

Further, when we increased the number of ways in the LLT

to account for extra storage of dpPred (iso-storage-TLB), the

performance improved for several applications. However, our

proposed dpPred provides much better IPC improvement.

Table IV shows the reduction in LLT MPKI under different

predictors, with increased storage for baseline design, and

for an approximation of an oracle dead-page predictor. The

oracle could provide a sense of further scope of improvement.

However, creating a true oracle predictor requires the full

knowledge of the future. This is impractical to simulate due

to gigantic size of memory access trace one would require.

TABLE V: LLC MPKI reductions by dead block predictors

Benchmark AIP–LLC
(%)

SHiP–LLC
(%)

cbPred
(%)

cactusADM 12.46 13.84 1.84
cc -6.56 -6.56 -1.60
cg.B -4.49 -2.63 5.90
sssp 0.19 14.29 17.82
lbm -2.76 13.99 17.74
Triangle 7.15 -7.74 0.65
KCore 1.74 -8.82 -0.45
canneal -15.54 -4.46 0.00
pr -5.00 -21.45 -0.39
graph500 38.79 22.87 4.25
bfs -22.35 -5.54 4.45
bc -11.49 -11.38 -0.17
mis -12.76 -10.67 7.45
mcf 23.59 16.00 1.81

Instead, we approximate oracle by tracking if a true DOA entry

replaced a non-DOA entry. This would effectively be an oracle

predictor with a lookahead of 1 for each evicted entry.

We find that dpPred reduced MPKI by 9.65%, on average.

Only the oracle betters it with an average MPKI reduction of

22.19%. The gap between dpPred and the oracle is due to

two primary reasons. First, the same page that was a DOA
during one of its stay in LLT may not be a DOA next time it

is brought to LLT. Whether a page is DOA during its stay in

LLT also depends upon other pages that are accessed during

that time. Understandably, this impacts predictability of DOA
without oracle knowledge. Second, not all DOA pages lead

to the same number of misses. Since the oracle predictor has

access to future information, it may identify additional DOA
entries that reduce a higher number of misses in the future,

while some correctly identified DOA entries by dpPred may

not cause any additional future misses. This shows that while

dpPred is more effective than other practical predictors, there

is still scope for further improvement.

B. Correlating dead block predictor

Next, we present IPC improvement when we add the

correlating dead block predictor (cbPred) on the LLC. Note

that cbPred works only when it is coupled with dpPred.

Figure 10 shows the normalized IPC (over baseline) for var-

ious LLC dead block predictors and combinations of the dead

page and dead block predictors. To put cbPred’s performance

in perspective, we also present IPC improvement due to AIP

514

and SHiP as well as when these two are applied to both L2

TLB and LLC together. First, we observe that cbPred, along

with dpPred improved performance of all 14 applications.

The average (geometric mean) IPC improvement is 8.3%. The

performance improvement is significantly more than any other

configuration we evaluated.

There are a couple of applications, graph500 and mcf
where cbPred’s improvements fall short of its peers. We

note that both of these applications demonstrate considerable

random access patterns that our predictors failed to lever-

age. Nonetheless cbPred, along with dpPred, still improves

performance over the baseline. Importantly, they improve

performance for all applications. The same is not true for its

peers. For example, for the page rank (pr) application both

AIP and SHiP suffered non-negligible performance loss. SHiP
also suffered performance loss for mis and bc.

Table V shows the reduction in LLC MPKI due to AIP-

LLC, SHiP-LLC and cbPred. We observe that six applica-

tions witness significant MPKI reductions due to cbPred,

explaining the corresponding IPC uplifts. The reduction is

most significant for sssp at about 18%. cbPred fails to reduce

LLC misses for applications where there are not many DOAs

in the LLC. Recall that cbPred attempts to predict only DOAs.

However, where cbPred fails to reduce misses, it at least

does not increase misses significantly. This is because cbPred
attempts to predict DOAs for cache blocks that fall in dead

pages and thus are likely to have DOA blocks (Section IV).

The same is not true for other dead block predictors such as

AIP and SHiP. For example, LLC misses increases significantly

under SHiP for applications such as pr, bc, mis.

In summary, our proposed dpPred, along with cbPred,

provides the most consistent and significant performance im-

provements and MPKI reductions in LLT and LLC.

C. Accuracy and coverage of predictors

We now report the accuracy and coverage of the proposed

predictors and how they are affected by the design optimiza-

tions we made. Accuracy is defined as the fraction of correct

predictions among all predictions made. Coverage is defined

as the fraction of correct predictions over the total number of

true (oracle) DOAs. In an ideal world, one would like both

high accuracy and coverage.

Table VI shows the accuracy and coverage of dpPred and

a constrained version of it called dpPred-SH. In dpPred-SH,

the two-entry shadow table is disabled. Thus, the difference

between dpPred and dpPred-SH shows the impact of the

shadow table on the accuracy and coverage of the predictors.

First, we observe that dpPred predicts DOA pages with

more than 80% accuracy and at least 50% coverage in more

than half of the applications studied. However, for applications

such as mcf, mis, canneal, Triangle, coverages are poor. Both

mcf and mis have a relatively low fraction of DOAs among

the dead pages (Figure 2) and consequently, dpPred fails to

train enough to predict. In the case of canneal and Triangle,

the statically set threshold on the saturating counter (default, 6)

for prediction turns out to be too conservative. This is because

the DOA VPNs are not repetitive enough for these applications

due to their streaming like access patterns.

The accuracy of dpPred is high across all applications

except for mcf and canneal where collisions in the history

table and the lower predictability of the DOAs itself are to be

blamed. In this context, we note the difference in accuracy

and coverage between dpPred and dpPred-SH. The negative

feedback provided by the shadow table helps improve accuracy

at the cost of possibly lowering the coverage. This is visible

in the case of mcf, and mis, where the accuracy improved by

a large margin but the coverage reduced significantly. Better

accuracy is important to ensure that no application suffers per-

formance loss due to excessive (wrongful) bypassing caused

by mispredicted DOAs.

To put our predictor’s accuracy and coverage in perspective,

we bring attention to SHiP-TLB’s accuracy and coverage.

Note that SHiP-TLB performed relatively better among the

alternatives considered. We observe that our proposed dpPred
provides significantly better accuracy across all the appli-

cations. For example, in applications such as cactusADM,

Triangle or KCore, there is a large difference in accuracy

enabled by dpPred compared to SHiP-TLB. While dpPred
also provides better coverage compared to SHiP, it is not

universally true. In cases like Triangle or graph500, the

shadow table in dpPred significantly reduced the coverage

in order to avoid mispredictions and wrong bypasses.

Next, we turn our attention to the correlating dead block

predictor. Table VII shows the accuracy and coverage with

cbPred, cbPred-PFQ and SHiP. cbPred-PFQ is the con-

strained version of cbPred that disallows the use of PFQ.

The difference between cbPred and cbPred-PFQ shows how

PFQ helps improve the accuracy.

First, we note the very high accuracy of cbPred for all

applications – the predictor is accurate at least 98% of the

time. The accuracy is consistently and significantly more than

that of the alternatives such as SHiP-LLC. A key reason

behind the high accuracy is the pre-filtering using knowledge

of dead pages via the PFQ. For example, accuracy for Tri-
angle improves from 84% to 100% when employing PFQ.

All applications witness almost perfect accuracy with pre-

filtering via PFQ. However, filtering of requests does reduce

coverage as one would expect. But even with moderate to low

coverage with very high accuracy, almost all of the bypasses

for predicted DOAs are useful and are substantial in number.

The benefit of highly accurate bypasses is visible in the

performance improvements it enables (Figure 10).

SHiP-LLC provides comparatively better coverage than

cbPred. However, in terms of accuracy cbPred still wins

across all applications and by a significant margin. Please note

that while SHiP-LLC is a specifically designed dead block

predictor for LLC, cbPred makes use of already available

dead page information to create a useful dead block predictor

at a small fraction of its storage cost.

515

D. Storage overhead comparison

A key requirement for a dead page predictor is to be

effective while being storage-efficient since TLBs themselves

require only about 11.75KB of storage. This philosophy is

then further extended to build a low-storage correlating dead

block predictor. The total storage cost, including dpPred and

cbPred, is 10.81KB (Section V-D), assuming a 1024-entry L2

TLB and a 2MB LLC. Compare this to the storage overheads

of 124KB and 66KB for AIP and SHiP respectively, for the

same LLT and LLC sizes. This shows that our proposed

predictors, working together, can achieve better performance

than many alternatives with 1/11
th - 1/6th of the typical storage

overhead.

E. Sensitivity analysis

We now explore how our proposed predictors behave in

response to alteration of various configurations.

Figure 11a shows the impact of changing LLT size on the

IPC improvement enabled by dpPred alone. As expected,

IPC improvement is typically a bit muted when the LLT

size is increased to 1536 entries due to less pressure on the

TLB. However, cactusADM and lbm are exceptions. These

applications thrash smaller LLTs, and the usefulness of entries

increases with a larger LLT size. dpPred is then able to

leverage the TLB better. In general, we see that dpPred
remains useful across different sizes of LLT.

In Figure 11b, we explore the impact of the choice of the

indexing function and the size of the pHIST table of dpPred.

We first focus on a 1024-entry pHIST table that can be either

indexed entirely by a 10-bit hash of PC or by a combination of

PC and VPN (default). The advantage of the latter is the less

storage overhead since unlike the PC, VPN is naturally part of

TLB entries and adds no extra overheads. We observe that the

performance remains almost the same irrespective of whether

we use a hash of 10 bit PC or a combination of 6-bit PC hash

and 4-bit VPN hash. This demonstrates that by combining PC
and VPN in a novel two-dimensional history table design, we

are able to lower the storage cost of the predictor without

impairing performance.

When we double the pHIST table size and use one more

bit in the hash of VPN, there is a slight improvement in

performance. Overall, we demonstrate that the use of a 6-bit

hash of PC, along with a hash of 4-bit VPN provides a good

balance between performance and storage cost.

Figure 11c shows the impact of changing the shadow table

size. A bigger shadow table reduces coverage while potentially

increasing accuracy. Both high coverage and high accuracy are

desirable for performance. We observe that increasing shadow

table size from 2 to 4 degrades performance slightly due to a

reduction in coverage. Therefore, we use 2-entry shadow table

for the default configuration.

Next, we turn attention to the dead block predictor –

cbPred. Figure 11d shows the impact on performance if the

PFQ size is changed. We found that increasing PFQ size from

8 to 64 did not impact performance in any noticeable way.

Therefore, we used 8-entry PFQ as default.

TABLE VI: Accuracy, coverage for dead page predictors

Benchmark dpPred dpPred
–SH SHiP-TLB

Acc
(%)

Cov
(%)

Acc
(%)

Cov
(%)

Acc
(%)

Cov
(%)

cactusADM 100 98 99 98 70 99
cc 72 70 70 74 67 68
cg.B 83 80 82 80 75 82
sssp 86 78 92 83 88 86
lbm 100 100 100 100 100 65
Triangle 84 23 78 36 55 42
KCore 90 71 88 75 69 81
canneal 72 13 72 13 62 25
pr 82 49 80 50 79 52
graph500 87 21 87 61 70 27
bfs 87 41 74 50 66 59
bc 74 49 49 56 54 47
mis 81 25 68 37 45 22
mcf 67 10 40 21 41 11

Figure 11e shows the impact of LLC size on the perfor-

mance of the predictors. The height of each bar is normalized

to the baseline with the given LLC size. As the size of the LLC

per-core is increased from 2MB to 3MB, benefits from the

predictors reduce slightly. However, it still remains substantial

at 7.03%, on average. Since a larger LLC makes misses less

frequent, the scope for improvement reduces.
Figure 11f shows the effectiveness of proposed predictors

when using an advanced replacement policy in LLT and LLC.

We choose SRRIP replacement policy for this purpose [6].

There are four bars for each application in the figure. The

height of each bar is normalized to the IPC of the baseline

with LRU replacement policy. The first bar shows normalized

IPC with LLT using SRRIP, while LLC continues with LRU.

We observe little value in using SRRIP in LLT only. The

second bar shows IPC uplifts with dpPred for an LLT that

uses SRRIP. We observe that IPC improves by 5̃% on average,

on top of LLT using SRRIP.
Therefore, dpPred remains effective even in the presence

of an advanced replacement policy.
The third bar shows IPC improvement when SRRIP is

applied to both LLT and LLC, over LRU. We observe that

SRRIP brings significant performance benefit over LRU, when

applied to LLC. However, importantly dpPred and cbPred,

working in tandem, bring further IPC improvement (6.29%, on

average). In short, we find that our predictors retain usefulness

even when advanced replacement policies are deployed.

F. Why not use large pages?
A legitimate question could be, why not use large pages to

reduce translation overheads and avoid changes to TLB? To

this, we wish to point out that large pages are no panacea.

Large pages are not transparent to the software. It requires

modifications in the operating system and/or to applications.
Large pages can significantly increase memory bloat, where

an application memory footprint artificially increases due to

excessive internal fragmentation [30], [31]. A commonly used

technique to employ large pages is Linux’s Transparent Huge

Pages or THP that maps memory with large pages as a best-

effort service but without requiring application modifications.

516

0.95

1.00

1.05

1.10

1.15
N

or
m

al
ize

d
IP

C
512 entries 1024 entries 1536 entries1.451.37 1.59

(a) Performance of dpPred for different TLB sizes

0.95

1.00

1.05

1.10

1.15

N
or

m
al

ize
d

IP
C

6 bit PC, 5 bit VPN 6 bit PC, 4 bit VPN 10 bit PC1.451.40 1.37

(b) Performance of dpPred for different history table configurations

0.95

1.00

1.05

1.10

1.15

N
or

m
al

ize
d

IP
C

2 entry shadow table 4 entry shadow table
1.441.45

(c) Performance of dpPred for different shadow table sizes

0.90

1.00

1.10

1.20

1.30

N
or

m
al

ize
d

IP
C

8 entry PFQ 64 entry PFQ
1.451.46

(d) Performance of cbPred for different PFQ sizes

0.90

1.00

1.10

1.20

1.30

N
or

m
al

ize
d

IP
C

2 MB/core 3 MB/core1.46 1.46

(e) Performance with dpPred and cbPred for different LLC sizes

0.8
0.9
1.0
1.1
1.2
1.3
1.4

N
or

m
al

ize
d

IP
C

SRRIP LLT SRRIP dpPred SRRIP LLT+LLC SRRIP cbPred1.49 1.64

(f) Performance of cbPred and dpPred when using SRRIP

Fig. 11: Sensitivity studies for our predictor designs

TABLE VII: Accuracy, coverage for dead block predictors

Benchmark cbPred cbPred
–PF SHiP-LLC

Acc
(%)

Cov
(%)

Acc
(%)

Cov
(%)

Acc
(%)

Cov
(%)

cactusADM 100 66 94 71 94 73
cc 99 40 86 61 89 66
cg.B 100 90 92 92 99 98
sssp 99 24 93 72 96 70
lbm 100 44 90 98 95 99
Triangle 100 43 84 46 93 83
KCore 100 34 95 80 92 96
canneal 100 14 87 67 87 74
pr 99 10 89 35 86 62
graph500 100 28 91 46 96 78
bfs 100 46 93 50 88 64
bc 98 27 90 32 89 71
mis 100 47 86 21 85 50
mcf 100 11 93 54 97 70

Unfortunately, THP is known to introduce latency jitters and

performance variance [32]. As a consequence, several com-

mercial software, particularly in-memory databases, advise

disabling of THP [7]–[9], [32]–[36].

Even when THP is enabled, only a part of application

memory would be mapped using large pages at any point in

time. Rest will use default 4KB pages. Further, larges pages

are not used by page caches in the file system due to increased

overheads of writing back to storage. In short, improving

performance under default 4KB pages helps a wide section

of applications, even those that use large pages.

Furthermore, proposed predictors are useful to TLBs for

large pages too. Unfortunately, quantitatively validating that

would require executing applications with a much larger

memory footprint, which leads to unrealistic simulation times.

VII. RELATED WORK

We discussed several dead cache block predictors that guide

our design in Section II. Here, we discuss other related TLB

and cache works.

A closely related but concurrent work to ours is

CHiRP [37]. It uses bits from multiple features to design a

signature-based TLB replacement policy. Our proposed dead

page predictor, dpPred, on the other hand, uses a bypassing

approach to optimize the LLT predictor with 1/2 - 1/7th of

the storage overhead incurred by CHiRP. Importantly, we

leverage the dead page information in the correlating dead

block predictor (cbPred) to efficiently predict dead blocks in

LLC. CHiRP does not attempt to predict dead blocks.

Many have explored the use of segments to selectively

bypass page walks to reduce translation overheads [38]–[42].

They require changes to both hardware and the OS. TLB

prefetching can also reduce TLB misses. Kandiraju et al. [43]

described three prefetching algorithms for TLBs, among which

distance-based prefetching gives the best performance for

most workloads. However, prefetching does not perform well

across all applications, which suggests that further hardware

or software improvements are required [44]. Bhattacharjee et

al. proposed inter-core cooperative TLB prefetchers for multi-

threaded workloads to share TLB entries [45]. Pham et al.

proposed to exploit intermediate contiguity to map multiple

pages using a single TLB entry [46]. Bhattacharjee later

proposed shared PWCs and efficient page table designs to

increase PWC hits [47]. Recently, Guvenilir et al. proposed

to leverage unused bits in page table entries to customize

517

how much of memory each TLB entry maps [48]. Barr et al.

proposed SpecTLB to predict address mappings to hide TLB

miss latency. MIX TLBs showed how to efficiently support

multiple page sizes within a single TLB [49]. Different from

these, we extend the concept of dead blocks to TLBs to

enhance its usefulness.

There have been numerous research proposals for better

management of LLC contents over the years. It is not possible

to do justice to all of them, but we mention a few important

ones here. Dynamic insertion policy (DIP) used set dueling to

dynamically adapt between LRU or MRU policy to get the best

of both worlds [5]. Qureshi et al. also made a case for a cache

replacement policy to be aware of memory-level parallelism

as the impact of all cache misses are not the same [4]. Re-

reference Interval Prediction classified blocks based on their

re-reference intervals and replaced the block that is predicted

to be re-referenced furthest in the future [6]. The HawkEye

predictor from 2017 Cache Replacement Championship (CRC)

learned from Belady’s OPT algorithm by training on past

accesses and utilizing it for future replacement decisions [3].

Xiang et al. proposed using less-reused cache blocks to

take bypassing decisions, apart from zero-reuse blocks [50].

Several research works also proposed bypassing of entries in

caches using either reuse distance [51] or using probabilistic

bypassing [15]. In our work, however, we focus on LLTs and

not caches.

VIII. CONCLUSION

We explored dead pages in the last level TLB. We observed

that a large fraction of LLT entries are dead at any point in time

and a good portion of those are dead-on-arrival. We, therefore,

designed a storage-efficient predictor for DOA pages in LLT.

We also discovered that DOA blocks in LLC and DOA pages

in LLTs are correlated. We then leverage this correlation to

design a dead-page predictor guided dead-block predictor in

the LLC. Together, these predictors improved IPC by over 8%,

on average, with only 10.81KB of extra storage (or 0.53% of

storage overhead over LLT and LLC).

IX. ACKNOWLEDGEMENT

We thank anonymous reviewers of HPCA 2021 for their

thoughtful review of this work. We thank Aditya Kamath for

his feedback on a draft of this article. This work is supported

by Pratiksha Trust, Bangalore, and by a research grant from

VMware Inc..

REFERENCES

[1] A.-C. Lai, C. Fide, and B. Falsafi, “Dead-block prediction &
dead-block correlating prefetchers,” SIGARCH Comput. Archit. News,
vol. 29, no. 2, pp. 144–154, May 2001. [Online]. Available:
http://doi.acm.org/10.1145/384285.379259

[2] C. Wu, A. Jaleel, W. Hasenplaugh, M. Martonosi, S. C. Steely, and
J. Emer, “Ship: Signature-based hit predictor for high performance
caching,” in 2011 44th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), 2011, pp. 430–441.

[3] A. Jain and C. Lin, “Back to the future: Leveraging belady’s algorithm
for improved cache replacement,” 2016 ACM/IEEE 43rd Annual Inter-
national Symposium on Computer Architecture (ISCA), pp. 78–89, 2016.

[4] M. K. Qureshi, D. N. Lynch, O. Mutlu, and Y. N. Patt, “A case
for mlp-aware cache replacement,” in Proceedings of the 33rd Annual
International Symposium on Computer Architecture, ser. ISCA ’06.
USA: IEEE Computer Society, 2006, p. 167–178. [Online]. Available:
https://doi.org/10.1109/ISCA.2006.5

[5] M. K. Qureshi, A. Jaleel, Y. N. Patt, S. C. Steely, and J. Emer,
“Adaptive insertion policies for high performance caching,” in
Proceedings of the 34th Annual International Symposium on Computer
Architecture, ser. ISCA ’07. New York, NY, USA: Association
for Computing Machinery, 2007, p. 381–391. [Online]. Available:
https://doi.org/10.1145/1250662.1250709

[6] A. Jaleel, K. B. Theobald, S. C. Steely, and J. Emer, “High
performance cache replacement using re-reference interval prediction
(rrip),” in Proceedings of the 37th Annual International Symposium
on Computer Architecture, ser. ISCA ’10. New York, NY, USA:
Association for Computing Machinery, 2010, p. 60–71. [Online].
Available: https://doi.org/10.1145/1815961.1815971

[7] “Recommendation to disable huge pages for MongoDB,” https://docs.
mongodb.org/manual/tutorial/transparent-huge-pages/.

[8] “Recommendation to disable huge pages for NuoDB,” http://www.
nuodb.com/techblog/linux-transparent-huge-pages-jemalloc-and-nuodb.

[9] “Recommendation to disable huge pages for Redis,” http://redis.io/
topics/latency.

[10] H. Liu, M. Ferdman, J. Huh, and D. Burger, “Cache bursts: A
new approach for eliminating dead blocks and increasing cache
efficiency,” in Proceedings of the 41st Annual IEEE/ACM International
Symposium on Microarchitecture, ser. MICRO 41. Washington, DC,
USA: IEEE Computer Society, 2008, pp. 222–233. [Online]. Available:
https://doi.org/10.1109/MICRO.2008.4771793

[11] S. M. Khan, Y. Tian, and D. A. Jimenez, “Sampling dead block
prediction for last-level caches,” in Proceedings of the 2010 43rd Annual
IEEE/ACM International Symposium on Microarchitecture, ser. MICRO
’43. Washington, DC, USA: IEEE Computer Society, 2010, pp.
175–186. [Online]. Available: https://doi.org/10.1109/MICRO.2010.24

[12] A.-C. Lai and B. Falsafi, “Selective, accurate, and timely self-
invalidation using last-touch prediction,” in Proceedings of the 27th
Annual International Symposium on Computer Architecture, ser. ISCA
’00. New York, NY, USA: ACM, 2000, pp. 139–148. [Online].
Available: http://doi.acm.org/10.1145/339647.339669

[13] M. Kharbutli and Y. Solihin, “Counter-based cache replacement algo-
rithms,” in 2005 International Conference on Computer Design, 2005,
pp. 61–68.

[14] P. Faldu and B. Grot, “Leeway: Addressing variability in dead-block
prediction for last-level caches,” in 26th International Conference
on Parallel Architectures and Compilation Techniques, PACT 2017,
Portland, OR, USA, September 9-13, 2017, 2017, pp. 180–193.
[Online]. Available: https://doi.org/10.1109/PACT.2017.32

[15] S. Gupta, H. Gao, and H. Zhou, “Adaptive cache bypassing for inclusive
last level caches,” in 2013 IEEE 27th International Symposium on
Parallel and Distributed Processing, 2013, pp. 1243–1253.

[16] M. Kharbutli, M. Jarrah, and Y. Jararweh, “Scip: Selective cache
insertion and bypassing to improve the performance of last-level caches,”
in 2013 IEEE Jordan Conference on Applied Electrical Engineering and
Computing Technologies (AEECT), 12 2013, pp. 1–6.

[17] H. Liu, M. Ferdman, J. Huh, and D. Burger, “Cache bursts:
A new approach for eliminating dead blocks and increasing
cache efficiency,” in Proceedings of the 41st Annual IEEE/ACM
International Symposium on Microarchitecture, ser. MICRO 41. USA:
IEEE Computer Society, 2008, p. 222–233. [Online]. Available:
https://doi.org/10.1109/MICRO.2008.4771793

[18] A. Bhattacharjee, “Translation-triggered prefetching,” in Proceedings of
the Twenty-Second International Conference on Architectural Support
for Programming Languages and Operating Systems, ser. ASPLOS ’17.
New York, NY, USA: Association for Computing Machinery, 2017, p.
63–76. [Online]. Available: https://doi.org/10.1145/3037697.3037705

[19] Z. Hu, S. Kaxiras, and M. Martonosi, “Timekeeping in the memory
system: Predicting and optimizing memory behavior,” SIGARCH
Comput. Archit. News, vol. 30, no. 2, pp. 209–220, May 2002. [Online].
Available: http://doi.acm.org/10.1145/545214.545239

[20] J. Abella, A. González, X. Vera, and M. F. P. O’Boyle, “Iatac: A
smart predictor to turn-off l2 cache lines,” ACM Trans. Archit. Code
Optim., vol. 2, no. 1, pp. 55–77, Mar. 2005. [Online]. Available:
http://doi.acm.org/10.1145/1061267.1061271

518

[21] Z. Wang, K. S. McKinley, A. L. Rosenberg, and C. C. Weems,
“Using the compiler to improve cache replacement decisions,”
in Proceedings of the 2002 International Conference on Parallel
Architectures and Compilation Techniques, ser. PACT ’02. USA:
IEEE Computer Society, 2002, p. 199. [Online]. Available: https:
//doi.org/10.1109/PACT.2002.1106018

[22] J. B. Sartor, S. Venkiteswaran, K. S. McKinley, and Z. Wang,
“Cooperative caching with keep-me and evict-me,” in Proceedings
of the 9th Annual Workshop on Interaction Between Compilers
and Computer Architectures, ser. INTERACT ’05. Washington, DC,
USA: IEEE Computer Society, 2005, pp. 46–57. [Online]. Available:
https://doi.org/10.1109/INTERACT.2005.7

[23] T. E. Carlson, W. Heirman, S. Eyerman, I. Hur, and L. Eeckhout, “An
evaluation of high-level mechanistic core models,” ACM Transactions
on Architecture and Code Optimization (TACO), 2014.

[24] J. L. Henning, “Spec cpu2006 benchmark descriptions,” SIGARCH
Comput. Archit. News, vol. 34, no. 4, pp. 1–17, Sep. 2006. [Online].
Available: http://doi.acm.org/10.1145/1186736.1186737

[25] J. Bucek, K.-D. Lange, and J. v. Kistowski, “Spec cpu2017: Next-
generation compute benchmark,” in Companion of the 2018 ACM/SPEC
International Conference on Performance Engineering, ser. ICPE ’18.
New York, NY, USA: Association for Computing Machinery, 2018, p.
41–42. [Online]. Available: https://doi.org/10.1145/3185768.3185771

[26] C. Bienia, “Benchmarking modern multiprocessors,” Ph.D. dissertation,
Princeton University, January 2011.

[27] S. Beamer, K. Asanović, and D. Patterson, “The gap benchmark suite,”
2015.

[28] P. Faldu and B. Grot, “Llc dead block prediction considered
not useful,” in 13th Workshop on Duplicating, Deconstructing
and Debunking, WDDD 2016, Jun. 2016. [Online]. Available:
http://www.eecg.toronto.edu/∼enright/wddd/

[29] kernel.org, Memory Protection Keys, https://www.kernel.org/doc/html/
latest/core-api/protection-keys.html.

[30] A. Panwar, S. Bansal, and K. Gopinath, “Hawkeye: Efficient fine-
grained os support for huge pages,” in Proceedings of the Twenty-Fourth
International Conference on Architectural Support for Programming
Languages and Operating Systems, ser. ASPLOS ’19. New York,
NY, USA: Association for Computing Machinery, 2019, p. 347–360.
[Online]. Available: https://doi.org/10.1145/3297858.3304064

[31] Y. Kwon, H. Yu, S. Peter, C. J. Rossbach, and E. Witchel, “Coordinated
and efficient huge page management with ingens,” in Proceedings
of the 12th USENIX Conference on Operating Systems Design and
Implementation, ser. OSDI’16. USA: USENIX Association, 2016, p.
705–721.

[32] “The black magic of systematically reducing linux os jitter,”
http://highscalability.com/blog/2015/4/8/the-black-magic-of-
systematically-reducing-linux-os-jitter.html.

[33] “Arch Linux becomes unresponsive from khugepaged,”
http://unix.stackexchange.com/questions/161858/arch-linux-becomes-
unresponsive-from-khugepaged.

[34] “Recommendation to disable huge pages for VoltDB,” https://docs.
voltdb.com/AdminGuide/adminmemmgt.php.

[35] “Why TokuDB Hates Transparent HugePages,” http://amd-
dev.wpengine.netdna-cdn.com/wordpress/media/2012/10/Hadoop
Tuning Guide-Version5.pdf.

[36] “Tales from the Field: Taming Transparent Huge Pages on Linux,”
https://www.perforce.com/blog/151016/tales-field-taming-transparent-
huge-pages-linux.

[37] S. Mirbagher-Ajorpaz, E. Garza, G. Pokam, and D. A. Jiménez, “Chirp:
Control-flow history reuse prediction,” in 2020 53rd Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), 2020, pp. 131–
145.

[38] A. Basu, J. Gandhi, J. Chang, M. D. Hill, and M. M. Swift, “Efficient
virtual memory for big memory servers,” in Proceedings of the 40th

Annual International Symposium on Computer Architecture, ser. ISCA
’13. New York, NY, USA: ACM, 2013, pp. 237–248. [Online].
Available: http://doi.acm.org/10.1145/2485922.2485943

[39] A. Basu, “Revisiting virtual memory,” 2013, http://research.cs.wisc.edu/
multifacet/theses/arka basu phd.pdf.

[40] A. Basu and M. M. Hill, Mark D. amd Swift, “Virtual memory
management system with reduced latency,” 2015, https://patents.google.
com/patent/US9158704B2/en.

[41] J. Gandhi, A. Basu, M. D. Hill, and M. M. Swift, “Efficient memory
virtualization: Reducing dimensionality of nested page walks,” in
Proceedings of the 47th Annual IEEE/ACM International Symposium
on Microarchitecture, ser. MICRO-47. Washington, DC, USA:
IEEE Computer Society, 2014, pp. 178–189. [Online]. Available:
http://dx.doi.org/10.1109/MICRO.2014.37

[42] V. Karakostas, J. Gandhi, F. Ayar, A. Cristal, M. D. Hill, K. S.
McKinley, M. Nemirovsky, M. M. Swift, and O. Ünsal, “Redundant
memory mappings for fast access to large memories,” in Proceedings of
the 42Nd Annual International Symposium on Computer Architecture,
ser. ISCA ’15. New York, NY, USA: ACM, 2015, pp. 66–78. [Online].
Available: http://doi.acm.org/10.1145/2749469.2749471

[43] G. B. Kandiraju and A. Sivasubramaniam, “Going the distance for tlb
prefetching: An application-driven study,” SIGARCH Comput. Archit.
News, vol. 30, no. 2, pp. 195–206, May 2002. [Online]. Available:
http://doi.acm.org/10.1145/545214.545237

[44] G. Kandiraju and A. Sivasubramaniam, “Characterizing the d-tlb
behavior of spec cpu2000 benchmarks,” SIGMETRICS Perform. Eval.
Rev., vol. 30, no. 1, pp. 129–139, Jun. 2002. [Online]. Available:
http://doi.acm.org/10.1145/511399.511351

[45] A. Bhattacharjee and M. Martonosi, “Inter-core cooperative TLB for
chip multiprocessors,” in Proceedings of the Fifteenth Edition of
ASPLOS on Architectural Support for Programming Languages and
Operating Systems, ser. ASPLOS XV. New York, NY, USA: ACM,
2010, pp. 359–370. [Online]. Available: http://doi.acm.org/10.1145/
1736020.1736060

[46] B. Pham, V. Vaidyanathan, A. Jaleel, and A. Bhattacharjee, “CoLT: Coa-
lesced large-reach TLBs,” in 2012 45th Annual IEEE/ACM International
Symposium on Microarchitecture, Dec 2012, pp. 258–269.

[47] A. Bhattacharjee, “Large-reach memory management unit caches,” in
Proceedings of the 46th Annual IEEE/ACM International Symposium
on Microarchitecture, ser. MICRO-46. New York, NY, USA: ACM,
2013, pp. 383–394. [Online]. Available: http://doi.acm.org/10.1145/
2540708.2540741

[48] F. Guvenilir and Y. N. Patt, “Tailored page sizes,” in 2020 ACM/IEEE
47th Annual International Symposium on Computer Architecture (ISCA),
2020, pp. 900–912.

[49] G. Cox and A. Bhattacharjee, “Efficient address translation for
architectures with multiple page sizes,” in Proceedings of the
Twenty-Second International Conference on Architectural Support for
Programming Languages and Operating Systems, ser. ASPLOS ’17.
New York, NY, USA: ACM, 2017, pp. 435–448. [Online]. Available:
http://doi.acm.org/10.1145/3037697.3037704

[50] L. Xiang, T. Chen, Q. Shi, and W. Hu, “Less reused filter: Improving
l2 cache performance via filtering less reused lines,” in Proceedings
of the 23rd International Conference on Supercomputing, ser. ICS ’09.
New York, NY, USA: Association for Computing Machinery, 2009, p.
68–79. [Online]. Available: https://doi.org/10.1145/1542275.1542290

[51] N. Duong, D. Zhao, T. Kim, R. Cammarota, M. Valero, and A. V.
Veidenbaum, “Improving cache management policies using dynamic
reuse distances,” in Proceedings of the 2012 45th Annual IEEE/ACM
International Symposium on Microarchitecture, ser. MICRO-45. USA:
IEEE Computer Society, 2012, p. 389–400. [Online]. Available:
https://doi.org/10.1109/MICRO.2012.43

519

